

Pythagorean Triples - are integer solutions for the Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
$3,4,5$ If $c=b+1$, then $a^{2}=b+c$
5, 12, 13
7, 24, 25
9, 40, 41
11, 60, 61
13, 84, 85
15, 112, 113
plus all multiples of these triples

And there are more...
17, 144, 145
And more...
$8,15,17$
12, 35, 37
If $c=b+2$, then $a^{2}=(b+c)^{2}$
16, 63, 65
And more...

1. What patterns can you find in all of thesepumbers? Think about this as you color the spiraling squares.
2. Can you add the next triple or the next sized square to our lists? Please explain how you are figuring this out.

| Triangles shown in this image |
| :---: |
| $3-4-5$ |
| $t^{2} 5-12-13$ |
| $7-24-25$ |
| $9-40-41$ |
| $11-60-61$ |
| $13-84-85$ |
| $15-112-113$ |
| $17-144-145$ |
| $19-180-181$ |


| Squares shown in this image from the center out. |  |
| :---: | :---: |
| $1 \times 1$ |  |
| $+45 \times 5 \longleftarrow$ |  |
| +2 $7 \times 7$ |  |
| ${ }^{+6} 13 \times 13 \longleftarrow$ |  |
| $+417 \times 17$ |  |
| ${ }^{78} 25 \times 25 \leftarrow$ |  |
| ${ }^{16} 31 \times 31$ |  |
| +10 $41 \times 41$ a- |  |
| +849×49 |  |

3. Can you figure out the missing triangle side in $\mathrm{tla}^{-7}$ ch of these right triangles? The last side of our list is always the hypotenuse. $85 \times 85$
a. $10,24, \ldots$
b. $14, \ldots ?, 50$
c. 16,30, ?
d. $15, \ldots ?, 25$
e. $18,80, \ldots$ ?
