
Pythagorean Triples - more coloring

Pythagorean Triples - are integer solutions for the Pythagorean Theorem: $a^2+b^2=c^2$

plus all multiples of these triples

And there are more...

17, 144, 145

And more...

8, 15, 17 12, 35, 37 16, 63, 65 $|fc=bta_1| \text{thena}^2 = (btc)^2$ $|fc=bt3|, \text{thena}^2 = 3(btc)$

And more...

2. Can you add the next triple or the next sized square to our lists? Please explain how you are figuring this out.

Triangles shown in this image		
3-4-5,		
5-12-13		
7-24-25		
9-40-41		
11-60-61 6		
13-84-85		
15-112-113		
17-144-145		
19 -180 -181		

Squares shown in this	
image from the center out.	
1 x 1	
5 x 5 C	
7 x 7	
13 x 13 <u></u>	
`17 x 17	
₹ 25 x 25€	
1,31 x 31	
41 x 41	
+649 ×49	
+ 12 1×61 ←	

- 3. Can you figure out the missing triangle side in that of these right triangles? The last side of our list is always the hypotenuse.
 - a. 10, 24, <u>?</u>__
 - b. 14, <u>?</u>_, 50
 - c. 16, 30, <u>?</u>__
 - d. 15, _?__, 25
 - e. 18, 80, <u>?</u>__