Mr. Rogove

Date:_____

LEARNING OBJECTIVE: We will use rational approximation to get a more accurate decimal expansion of irrational numbers. (G8M7L8)

CONCEPT DEVELOPMENT:

<u>Irrational Numbers:</u> Numbers that have infinite decimal expansions **and DO NOT** have repeating block of digits.

Example: $\sqrt{3}$, $\sqrt{22}$

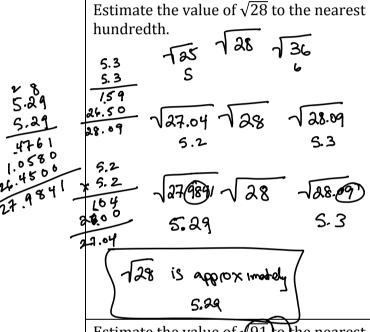
<u>Non-Example:</u> $\frac{5}{3}$, $\sqrt{12.25}$

Using Rational Approximation to Get the Decimal Expansion of Square Roots

Rational approximation uses a sequence of rational numbers to get closer and closer to a given number to estimate the value of the number.

- -Begin by determining the integers that the square root lies between.
- -Then determine which interval of tenths that the number belongs.
- -Then determine which interval of hundredths the number belongs.

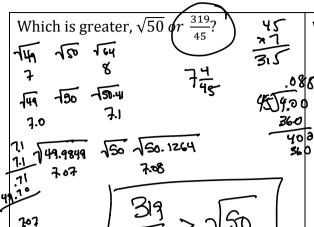
We can use rational approximation to compare irrational numbers

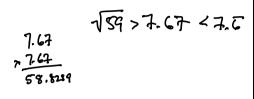

Mr. Rogove

Date:

GUIDED PRACTICE:

Steps to Finding the Values of Square Roots

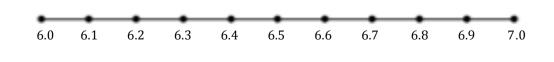

- 1. Determine which two integers the square root is between.
- 2. Use rational approximation to determine which interval of tenths the number falls between.
- 3. Use rational approximation to determine which interval of hundredths the number falls between.
- 4. If necessary make the requested comparison.


Estimate the value of $\sqrt{17}$ to the nearest hundredth. 4.13 4.13 17.0569 Estimate the value of $\sqrt{91}$ to the nearest Estimate the value of $\sqrt{78}$ to the nearest hundredth. hundredth. 791 00 9.6 791 J90.829 791.0116 9.53 9.54 Ja) 9.54

Mr. Rogove

3

Which is greater,
$$\sqrt{59}$$
 or $\frac{253}{33}$? 7. **6**



Place the following on a number line:

7.06

$$\sqrt{38}$$
, $\sqrt{43}$, $\sqrt{47}$, $\frac{20}{3}$, $6.\overline{15}$, $\frac{53}{8}$

7.09

NAME:	Math, Period
Mr. Rogove	Date:

INDEPENDENT PRACTICE:

Estimate the value of $\sqrt{22}$ to the nearest hundredth.	Estimate the value of $\sqrt{63}$ to the nearest hundredth.
Which is greater, $\sqrt{72}$ or $8.\overline{4}$?	Which is greater, $\sqrt{14}$ or $\frac{15}{4}$?

ACTIVATING PRIOR KNOWLEDGE:

We can divide fractions using long division:

$\frac{4}{11}$	$\frac{5}{12}$

CLOSURE:

Describe at least three ways to approximate $\sqrt{108}$

or Approximate $\sqrt[3]{25}$

Notes:

Lesson 11 and 13?

Homework should be lesson 13 Problem set. No calculator PLEASE!!!