NAME:	Math 7.2, Period
Mr. Rogove	Date:

Irrational Numbers Study Guide

SQUARE ROOTS AND CUBE ROOTS

Positive Square Roots

A positive number whose square is equal to a positive number b is denoted by the symbol \sqrt{b} . The symbol \sqrt{b} is automatically denotes a positive number. The number \sqrt{b} is called the positive square root of b.

<u>Cube Roots</u>: The cube root of a number, x, is the number, y which satisfy the equation $x = y^3$. The notation we use is as follows: $\sqrt[3]{x} = y$ $Example: 8 = 2^3$ and $\sqrt[3]{8} = 2$

Simplifying Square Roots

You can simplify square roots by rewriting the radicand (number inside the radical symbol) as a product containing perfect squares (such as 4, 9, 16, 25, etc). The square root of perfect squares are integers.

Example: $\sqrt{48} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3}$

Solving Equations with Square and Cube Roots

We can simplify the expressions until we have the form of $x^2 = p$ or $x^3 = p$ and then take the square root or cube root of both sides of the equation to solve for x.

Example: $3x^2 = 48 \Rightarrow$ (divide by 3) $x^2 = 16 \Rightarrow$ (take square root of each side) x = 4

For more refreshers, go to <u>www.khanacademy.com</u>. Work on the following exercises and watch associated videos:

- Square roots of perfect squares
- Cube roots
- Equations with square roots and cube roots
- Roots of Decimals and Fractions
- Square and Cube Challenge
- Simplify Square Roots
- Simplify square-root expressions:
- Approximating Square Roots

no variables

For more information, check out Lessons 1-5 from Module 7 on http://mrrogove.weebly.com

Date:____

RATIONAL AND IRRATIONAL NUMBERS

Rational Numbers: Any number that can be expressed as a fraction $\frac{p}{q}$ where p and q are both integers and $q \neq 0$.

Example: 41.13, $\frac{5}{2}$, $-\frac{111}{135}$, 64. $\overline{9}$

<u>Finite Decimals:</u> A subset of rational numbers which have terminating decimals. Written as fractions, **the denominators are products of only 2's and 5's**.

<u>Example</u>: $\frac{3}{32}$, 1.05, 4.253

Repeating Decimals: A subset of rational numbers that have infinite decimals that repeat. Written as fractions, **the denominators are products of numbers other than 2 and 5.**

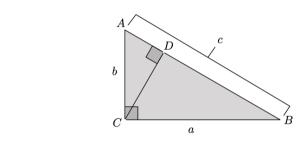
<u>Example</u>: $\frac{8}{9}$, $\frac{72}{93}$, 0.4545454545

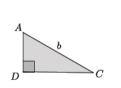
<u>Irrational Numbers</u>: The set of numbers that have infinite decimals that **DO NOT** repeat.

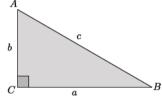
Example: $e, \pi, \sqrt{8}, \sqrt[3]{25}$

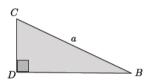
For more refreshers, go to www.khanacademy.com. Work on the following exercises and watch associated videos:

- Writing fractions as repeating decimals
- Converting 1-digit repeating decimals to fractions
- Converting multi-digit repeating decimals to fractions
- Classify numbers: rational & irrational
- Classify numbers
- Comparing irrational numbers
- Comparing irrational numbers with a calculator (try not to use a calc)


For more information, check out Lessons 6-8 from Module 7 on http://mrrogove.weebly.com


Date:_____


PYTHAGOREAN THEOREM


Pythagorean theorem is $a^2 + b^2 = c^2$

We can prove this using squares, similar triangles, and area. Refer to lesson 75 for specific information on the proofs.

Distance on a coordinate plane: We can use the Pythagorean Theorem to find the distance of diagonals on a coordinate plane.

Formula:
$$c = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

For more refreshers, go to www.khanacademy.com. Work on the following exercises and watch associated videos:

- Pythagorean Theorem
- Distance between two points
- Pythagorean Theorem in 3D
- Pythagorean Theorem Proofs
- Pythagorean Theorem word problems (videos)

For more information, check out Lessons 9-12 from Module 7 on http://mrrogove.weebly.com

NAME:	Math 7.2, Period	
Mr. Rogove	Date:	
PROBLEM SET I strongly suggest you solve these problems by hand. You will NOT be allowed to use a calculator on the assessment. In order to get ANY credit, you MUST SHOW YOUR WORK!!! Please initial here to indicate that you read this paragraph		
Simplify: √576	Simplify: √128	
Simplify: 3√80	Simplify: √512	
Simplify: ³ √729	Simplify: ³ √1024	

Solve for *x*.

$$x(2x^2 - 12x) = -6(2x^2 - 9)$$

Solve for *x*.

$$3x^2 - 4x + 13 = 2x(x - 2) + 29$$

Solve for *x*.

$$\frac{2x^9}{x^6} + 2x^2 = -4x\left(x - \frac{x^2}{2}\right) + 216$$

Solve for *x*.

$$\left(3\sqrt{x}\right)^4 = 1$$

Convert to a decimal. Classify as a repeating or finite decimal.

$$\frac{7}{12}$$

Convert to a decimal. Classify as a repeating or finite decimal.

$$\frac{42}{48}$$

NAME:		
INTIMIL.		

1. // . 1	7 2	D . 1	
Math	/.Z.	Period	

Date:			
	Data.		
	Date:		

Convert to a decimal. Classify as a repeating or finite decimal.	Convert to a decimal. Classify as a repeating or finite decimal.
$\frac{13}{15}$	13 125
Convert to a fraction.	Convert to a fraction.
$0.\overline{72}$	$0.07\overline{2}$
Convert to a fraction.	Convert to a fraction.
$0.\overline{234}$	$4.1\overline{2}$

NAME:	Math 7.2, Period
	,
Mr. Rogove	Date:

Approximate to the nearest hundredth	Approximate to the nearest hundredth
$\sqrt{80}$	$\sqrt{90}$
Approximate to the nearest hundredth	Approximate to the nearest hundredth
$\sqrt{20}$	$\sqrt{30}$
Which is greater: $\sqrt{21}$ or 4.4?	Which is greater: $\sqrt{47}$ or 6.8

Date:_____

Label these numbers on a number line in their approximate place.

$$\sqrt[3]{29}$$
 , $\sqrt{9}$, $\frac{10}{3}$, $3.\overline{2}$, $\sqrt{13}$

Prove the Pythagorean Theorem for a triangle that has sides of 12, 16, and 20 using the similar triangles proof.

Find the distance between
$$(1, -2)$$
 and $(8, -6)$ on the coordinate plane

Find the distance between (6, 10) and (15, -2) on the coordinate plane