LEARNING OBJECTIVE: We will identify the solution to systems of linear equations by graphing. (G8M4L22).

CONCEPT DEVELOPMENT:

A solution to a system of linear equations is an ordered pair (x, y). On a coordinate plane, this is where the graphs of the two linear equations intersect.

Example:

$$L_A \Rightarrow Y = 2x - 3$$

$$L_B \Rightarrow Y = X - 1$$

(2,1)

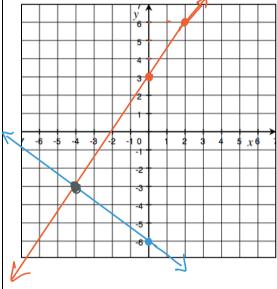
After we graph our equations, we MUST check our answers by verifying that the point of intersection is indeed a solution to each equation in the system.

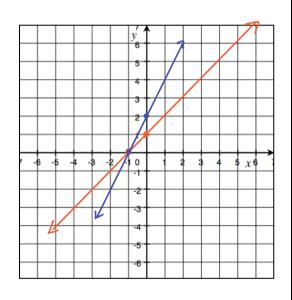
 $\frac{y=2x-3}{1=2(2)-3}$ 1=4-3

$$y = x - 1$$
?
 $1 = 2 - 1$
 $1 = 1$

Date:____

GUIDED PRACTICE:


Steps to Solving Systems of Equations by Graphing


- 1. Graph each equation on the same coordinate plane.
- 2. The solution is the point of intersection.
- 3. Check your answers by verifying that the point of intersection is a solution to each equation in the system.

$$y = -\frac{3}{4}x - 6$$

$$y = \frac{3}{2}x + 3$$

Solution: (-4,-3)

Solution: (-1,0)

$$y = -\frac{3}{4}x - 6$$

$$-3 = -\frac{3}{4}(-4) - 6$$

$$-3 = 3 - 6$$

$$-3 = -3$$

$$y = \frac{3}{2} \times +3$$

$$-3 \stackrel{?}{=} \frac{3}{2} (-4) +3$$

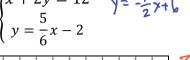
$$-3 \stackrel{?}{=} -6 +3$$

$$-3 \stackrel{?}{=} -3$$

Check:
$$y = x + 1$$

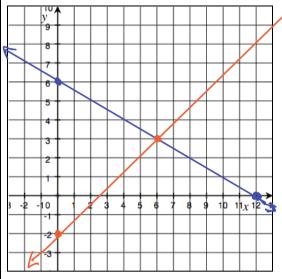
$$0 = -1 + 1$$

$$0 = 0$$


Check:

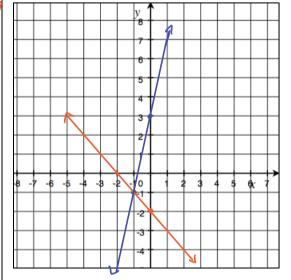
$$y = -\frac{3}{4}x - 6$$

 $-3 = \frac{3}{4}(-4) - 6$
 $-3 = \frac{3}{4}(-4) + 3$
 $-3 = -6 + 3$
 $-3 = -6 + 3$
 $-3 = -3 + 3$
Check:
 $y = x + 1$
 $0 = x + 1$


Steps to Solving Systems of Equations by Graphing

- 1. Graph each equation on the same coordinate plane.
- 2. The solution is the point of intersection.
- 3. Check your answers by verifying that the point of intersection is a solution to each equation in the system.

$$\begin{cases} x + 2y = 12 \\ y = \frac{5}{6}x - 2 \end{cases}$$

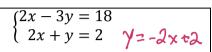


(6,3)

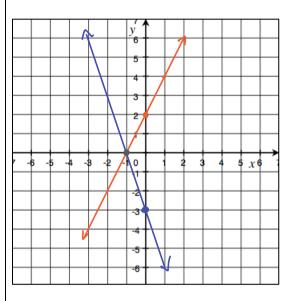
Solution:
$$\left(-l_{1}-l\right)$$

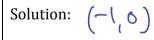
Check:

Solution:

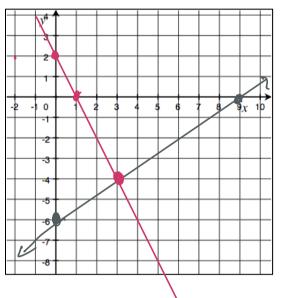

$$x+2y=12$$

 $6+2(3)=12$
 $6+6=12$
 $12=12$


Date:____


Steps to Solving Systems of Equations by Graphing

- 1. Graph each equation on the same coordinate plane.
- 2. The solution is the point of intersection.
- 3. Check your answers by verifying that the point of intersection is a solution to each equation in the system.


$$\begin{cases} 3x + y = -3 & y = -3x-3 \\ 2x - y = -2 & y = 2x+2 \end{cases}$$

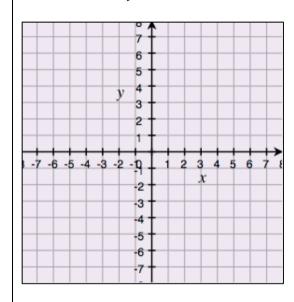
Check:

Solution: (3,-4)

Check:

Date:____

INDEPENDENT PRACTICE:


Provide the Problem set as independent practice...Page S. 152 and graph paper.

ACTIVATING PRIOR KNOWLEDGE:

You can graph each equation on the same coordinate plane:

$$y = -\frac{4}{3}x + 6$$

$$y = x - 1$$

$$y = 2x - 1$$

$$y = -\frac{1}{2}x + 4$$

Graph on your white boards

CLOSURE:

Write two different systems of equations with (1, -2) as the solution.

TEACHER NOTES:

Map to Lesson 25 in ENY Module 4 Grade 8 Homework is 6 questions handed out in class.