NAME:	Math_
Mr. Rogove	

_, Period_____ Date:_____

LEARNING OBJECTIVE: We will prove two geometric figures are similar by using dilations AND rigid motions. (G8M3L7)

ACTIVATING PRIOR KNOWLEDGE:

We know how to show two objects are similar by a dilation at a center 0. Dilate each geometric shape from the origin using a scale factor of 1/2.

CONCEPT DEVELOPMENT:

A dilation alone might NOT be enough to determine similarity. Sometimes, we will need to perform a dilation AND a rigid motion.

Example:

The solid shape is similar to the dashed shape by performing a dilation from the origin with a scale factor of 2 and translating 4 units to the right.

Non-Example:

The two shapes are not similar because there is not a sequence of a dilation and a rigid motion that can map S onto S'

Date:_____

Similarity is symmetric. This means that if $A \sim A'$, then $A' \sim A$. *Example*:

Similarity is transitive. This means that if $R \sim S$ and $S \sim T$, then $R \sim T$. Example:

NAME:	Math, Period
Mr. Rogove	Date:

GUIDED PRACTICE:

Steps for Describing Similarity that Exists between Geometric Figures

- 1. Dilate the original shape from a center (if possible, let it be the origin). Choose a scale factor that will cause the dilated shape to be the same size as the shape you're trying to show similarity with.
- 2. Perform the necessary rigid motions to map one figure onto another, showing similarity.

Date:_____

Date:_____

R→R'

() T(-S,-10) (2) Dilate from (-12,-1) (= \frac{1}{2} \omega \text{Rotate 180° (0,8)} (= \frac{1}{2})

A'B'C' -> A"B"C" () Reflect y2 - x +3 (2) T(2,7)

3 Dhate 1=2 from (5,3)

Date:_____

NAME:	Math, Period
Mr. Rogove	Date:

CLOSURE:

Is a dilation alone always enough to prove that two figures are similar? Explain.

TEACHER NOTES:

Last one is not similar, but all the others are.