Math 7.1 Period

Mr. Rogove

Date:

LEARNING OBJECTIVE: We will prove the angle sum theorem of a triangle and use that to determine the measures of unknown angles. (G8M2L9)

CONCEPT DEVELOPMENT:

Angle Sum Theorem for Triangles: The sum of the interior angles of a triangle is always 180°.

Examples:

$$41 + 42 + 43$$

$$44 + 45 + 46$$

$$\cancel{4}7 + \cancel{4}8 + \cancel{4}9 = 180^{\circ}$$

Proving that a Triangle has 180 degrees:

- 1. We need to find a straight angle (straight line). We KNOW these are 180 degrees.
- 2. We need this straight line to be made up of three individual angles.
- 3. We need to match up the three angles on the straight line to the three angles in a triangle. When we do this, voila, we have shown that a triangle has 180 degrees.

What we already know that will help us PROVE the theorem:

- A straight angle is 180°. ✓
- (Corresponding angles) of parallel lines are equal in measure.
- Alternate interior angles of parallel lines are equal in measure.

*BCA + * ACE + * ECD = 180°

*BCA + * BCA + * BK + * ABC = 180°

*BCA = * * BCA

*BCA + * BK + * ABC = 180°

*BCA + * BK + * ABC = 180°

*BCA + * BK + * ABC = 180°

*BCA + * BK + * ABC = 180°

*BCA + * ACE + * ECD = 180°

*BCA + * ACE + * ECD = 180°

*BCA + * ACE + * ECD = 180°

*BCA + * ACE + * ECD = 180°

*BCA + * ACE + * ECD = 180°

*BCA + * ACE + * ECD = 180°

*BCA + * ACE + * BK + * ABC = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ABCA + * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE = * ACE + * ECD = 180°

*ACE

NAME:	(1) 1 2	Math 7.1 Period
Mr. Rogove	-	Date:

DADT O

Proving that a Triangle has 180 degrees:

- 1. We need to find a straight angle (straight line). We KNOW these are 180 degrees.
- 2. We need this straight line to be made up of three individual angles.
- 3. We need to match up the three angles on the straight line to the three angles in a triangle. When we do this, voila, we have shown that a triangle has 180 degrees.

Method #2: Drawing a line on top of the triangle

DRAW AB so that ABILYZ

2) XAXB = 180°

XAXY + XYX2 + XBXZ = 180°

XYXZ = XYXZ REFLEXIVE.

XAXY = XXXZ ALTERNATE INT. X'S

48XZ = XXZY ALTERNATE INT. 3S

XAXY + XYX2 + XBXZ = 180° = STRAIGHT Angles 24 XYZ + 3YXZ + 4XZY = 180° A TRIANGLE

NAME:

Math 7.1 Period

Mr. Rogove

PART 3

Date:_____

GUIDED PRACTICE:

Steps for Proving that a Triangle has 180°

- 1. Identify the triangle you're trying to prove is 180°.
- 2. Name the straight angle that will be helpful in proving the sum of the interior angles of a triangle are 180° .
- 3. Identify (or draw) parallel lines that will help you prove the Triangle Sum Theorem.
- 4. Use knowledge about corresponding and alternate interior angles to prove that sum of the measure of the interior angles of a triangle is identical to the measure of a straight angle.

NAME:	Math 7.1 Period
Mr. Rogove	Date:

INDEPENDENT PRACTICE:

Maybe have students work on the problem set as independent practice?

ACTIVATING PRIOR KNOWLEDGE:

If we know that 5 + 8 + 14 = 27, what does 14 + 5 + 8 equal? How do we know?

If x + y + z = 180, what can make the following equation true: x + z + ??? = 180? How do we know?

CLOSURE:

Exit Ticket for Lesson 13.

TEACHER NOTES:

Use the Problem of the Week 3231 as HW? HW is problem set from lesson 13