Mr. Rogove

Date:

LEARNING OBJECTIVE: We will multiply and divide numbers expressed in scientific notation. (G8M1L10)

CONCEPT DEVELOPMENT:

ANY ORDER, ANY GROPPING.

Using the Commutative and Associative Properties to Rewrite Multiplication Problems

Example: The world population is about 7 billion. If there are 4.6×10^7 ants for every human, how many ants are there?

 $(7 \times 10^9) (4.6 \times 10^7)$

32.2 ×1016 A CONVERT 3.22 ×1017 A TOSCI.

GUIDED PRACTICE:

Steps for Multiplying (or Dividing) Numbers Expressed in Scientific Notation $(d \times 10^n)$

- 1. Multiply (or divide) the *d* values.
- 2. Multiply (or divide) the powers of 10.
- 3. If necessary, rewrite expressing number in correct scientific notation.

Multiply
$$(7 \times 10^{2})(4 \times 10^{5})$$
 $(7 \times 4) \times (10^{2} \times 10^{5})$
 $(1.5 \times 7) \quad (10^{-4} \times 10^{15})$
 $(1.5 \times 7) \quad (10^{-4} \times 10^{15})$

Divide:

Divide:

$$(2 \times 10^{3}) \times (10^{12}) \times (10^{12})$$
 $(2 \times 10^{3}) \times (10^{12}) \times (10^{12})$
 $(2 \times 10^{13}) \times (10^{12}) \times (10^{12})$
 $(2 \times 10^{13}) \times (10^{12}) \times (10^{12})$
 $(3 \times 10^{12}) \times (10^{12}) \times (10^{12})$
 $(3 \times 10^{12}) \times (10^{12}) \times (10^{12})$
 $(3 \times 10^{12}) \times (10^{12}) \times (10^{12}) \times (10^{12})$
 $(3 \times 10^{12}) \times (10^{12}) \times (10^{1$

Mr. Rogove

Date:

The population of California is 3.8×10^7 people. Each person on average eats 6.3×10^2 pounds of dairy products in a year. How many pounds of dairy products are consumed in California each year?

Multiply?

$$(3.8 \times 10^{7}) (6.3 \times 10^{2})$$

$$(3.8 \times 6.3) (10^{2} \times 10^{2})$$

$$23.94 \times 10^{9}$$

$$1 \quad 2.394 \times 10^{10} \quad 1 \text{ bs.}$$

The term mole can be used in chemistry to refer to 6.02×10^{23} atoms of a substance. The mass of a single hydrogen molecule is approximately 1.67×10^{-24} gram. What is the mass (in grams) of 1 mole of hydrogen atoms?

$$(6.02 \times 10^{23}) (1.67 \times 10^{-24})$$

$$(6.02 \times 1.67) (10^{23} \times 10^{-24})$$

$$10.0534 \times 10^{-1}$$

$$1.00534 \times 10^{\circ}$$

$$= 1.00534 \text{ gra}$$

The speed of light is 300,000,000 meters per second. The sun is approximately 1.5×10^{11} meters from earth. How many seconds does it take for sunlight to reach earth?

1.5 ×10" ~

300,000,000 3×10^{8} 1.5×10^{11} 3×10^{8} 5×10^{2} 500 seconds

2

In 2010, Americans generated 2.5×10^8 tons of garbage. If there are 2000 landfills in the U. S., Kow much garbage (on average) did each landfill receive?

Mr. Rogove

INDEPENDENT PRACTICE:

Steps for Multiplying (or Dividing) Numbers Expressed in Scientific Notation $(d imes 10^n)$

- 1. Multiply (or divide) the d values.
- 2. Multiply (or divide) the powers of 10.
- 3. If necessary, rewrite expressing number in correct scientific notation.

A certain social media company processes about 990 billion "likes" per year. If the company has approximately (8.9×10^8) users of the social media, how many "likes" is each user responsible for?

A cup of decaf coffee has abou 0.009 grams of caffeine. A cup of regular coffee has about 12 times the caffeine. How much caffeine does a regular cup have? Please write your answer in scientific notation.

About 8.4×10¹¹ drops of water flow over Niagara Falls each minute. Each drop of water contains about 1.7×10²² molecules of water. About how many molecules fall each minute?

As of January 1, 2014, the US debt was roughly \$17,300,000,000. The population was about 3.14×10^8 . About how much is each citizens share of the national debt?

SS,000 / person

NAME:	Math, Period_	
Mr. Rogove	Date:	

ACTIVATING PRIOR KNOWLEDGE:

We can compare numbers that are large or small.

Order the following numbers from largest to smallest:	Order the following numbers from largest to smallest:
A. 3.4×10^8	A. 0.00012
B. 9.996×10^7	B. 1.2 ×10 ⁻³
C. 10 ⁹	$C. 9.9 \times 10^{-4}$
D. 500,000,000	D. 10 ⁻⁴

CLOSURE:

The speed of light is 3×10^8 meters per second. The sun is approximately 230,000,000,000 meters from Mars. How many seconds does it take for sunlight to reach Mars?

If the sun is approximately 1.5×10^{11} meters from Earth, what is the approximate distance from Earth to Mars?

TEACHER NOTES:

Homework for this: Multiplying and Dividing Scientific Notation on Khan