\qquad

LEARNING OBJECTIVE: We will use if-then moves to solve problems involving multiple steps. (G7M3L9)

CONCEPT DEVELOPMENT:

When Solving Equations, It's Important to KNOW the Following:

- Our goal in solving linear equations is to get x to equal a number. This is often called "isolating the variable."
- The properties of operations are used to create equivalent expressions on ONE SIDE of the equation only. This would include using the distributive property, the associative property. It doesn't change the value of an expression, but can make the expression easier to work with.
- A good first step might be to combine like terms on each side of the equation.
- The if-then moves are used to modify BOTH SIDES of an equation at the same time. They will create different expressions on each side of the equal sign, but the solutions do not change.

Example:

$\frac{2(x-5)}{3}=30$	Original expression. Solve for x.
$\frac{2 x-10}{3}=30$	Use the distributive property (Change one side only!)
$3\left(\frac{(2 x-10)}{3}\right)=3 \cdot 30$	Use if-then moves to get rid of denominator. (Change both sides of the same expression. $)$
$2 x-10=90$	Use if-then moves-change both sides of the equation.
$2 x-10+10=90+10$	$2 x=100$ $\frac{1}{2}(2 x)=\frac{1}{2}(100)$
Use if-then moves-change both sides	
of the equation.	

Mr. Rogove
Date: \qquad

GUIDED PRACTICE:

Steps for Solving Problems Involving Multiple Steps

1. Read the problem carefully and decide if a diagram would be helpful.
2. Define your variable.
3. Write your equation to model the situation or story you are presented with.
4. Combine all like terms (if needed).
5. Use your if-then moves to solve for x.
6. Interpret your answer by answering the questions posed.

Maia, Trevor, and Anastasia are volunteer firefighters. On Saturday the volunteer fire department held their annual coin drop fundraiser near Castro Street. After one hour, Maia had collected $\$ 42.50$ more than Trevor. Anastasia collected $\$ 15.00$ less than Maia. Altogether, the three of them collected $\$ 125.95$. How much did each person collect?

$T: 18.65$ $M: 61.15$ $A: 46.15$

$$
\begin{aligned}
& x=\text { what Trevor collected. } \\
& x+42.50=\text { what Maia collected } \\
& x+42.50-15.00=\text { Anastasia } \\
& x+x+42.50+x+27.50=125.95 \\
& 3 x+70=125.95 \\
& -70) \frac{70.00}{5} \frac{42.50}{5} \frac{\frac{35.95}{3}}{\frac{518.65}{.15}}
\end{aligned}
$$

Shelby is 7 times as old as Bonnie. If in 5 years, the sum of Bonnie's and Shelby's age is 98, find Bonnie's present age.

$$
\begin{aligned}
& \text { Let } x=\text { Bonnie } \\
& \text { Let } 7 x=\text { Shelby } \\
& x+5+7 x+5=98 \\
& x+10=98 \\
& -10=\frac{-10}{89}
\end{aligned}
$$

Justin has $\$ 7.50$ more than Eva has and Emma has $\$ 12.00$ less than Justin does. How much money does each person have if they have a total of $\$ 63.00$?

$$
x=E v_{a}
$$

$$
x+7.50=\text { Justin }
$$

$$
\begin{aligned}
& x+7.50=\text { Justin } \\
& x+7.50-12=E_{\text {mama. }}=x-4.50
\end{aligned}
$$

$$
x+x+7.50+x+\frac{1}{-4.50}=63
$$

$$
3 x+3=63
$$

$$
\begin{aligned}
& x+3=60 \\
& -3 \mid-3
\end{aligned}
$$

Michael is 17 years older than John. In 4 years, the sum of their ages will be 49 . Find Michael's present age.

\qquad

Every day, Quincy practices softball and
Every day for 5 days, Malik practices karate. Over those five days, he also practices writing calligraphy for 2 hours. If he practiced both karate and calligraphy for a total of 20 hours, how many hours a day did he practice karate?

$$
x=\text { \#of hours of Karate each day. }
$$

$$
5 x+2=20
$$

$$
\begin{aligned}
& -2 \\
& \frac{5 x}{5}=\frac{-2}{5}
\end{aligned}
$$

$$
x=3.6 \text { hours }
$$

Date: \qquad

Lizzy and Laynie did a bike-run-athon

A Vespa scooter has a top speed that goes 2 miles per hour faster than Honda's scooter. If after 3 hours, the Vespa traveled 24 miles, at what rate did the Honda scooter travel at its top speed?
$d=r t($ distance $=$ rate \times time $)$.

Line of Learning:

1. Writing equation can be harder than solving ot.
2. At the beginning, define what " x " equals
3. Whatever you to left side of equation, do
it to the right side
4. Read the problem carefully.
5. Important to identify variable.
6. When yo have a twa she p equation, ald or subtract
first!!
\qquad
\square
INDEPENDENT PRACTICE:

Kevin is twice as old now as his brother is. If Kevin was 8 years old 2 years ago, how old is Kevin's brother now?	A number is 6 greater than $\frac{1}{2}$ another number. If the sum of the two numbers is 21, find the two numbers.

\qquad

Caterina went to Abercrombie to buy school clothes. She had a credit from a previous return in the amount of $\$ 39.58$. She bought 4 of the same style shirt in different colors. After she applied her credit, the total she paid was $\$ 52.22$. How much was each shirt?	Kaishu rode his bike 70 miles in 4 hours. He rode 17 miles per hour for t hours and an average rate of 22 miles per hour for the rest of the time. How long did Kaishu ride at the slower speed?

\qquad

Activating Prior KnOWLedge:

We already know how to use the distance formula $d=r t$ (distance $=$ rate \times time $)$

A marathon runner did a workout where she ran at an average rate of 7.5 miles per hour for 100 minutes. How many miles did she run?	Your Thanksgiving trip from Mountain View to San Luis Obispo takes $3 \frac{1}{2}$ hours to drive at an average speed of 58 miles an hour. How many miles was the trip?

Closure:

TEACHER NOTES:

This is lessons 8 and 9 from ENY Mod 3. This will be a long lesson??
Will be breaking up into small groups for the second period:

1. Engage NY page 144-45 puzzles. Or Square puzzles?
2. Math Forum PoW or Khan Academy
3. Computers-Knowre.
4. Ken Ken.
