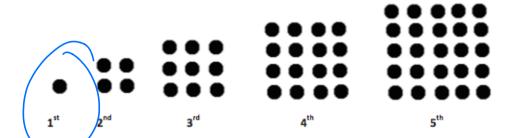
Mr. Rogove


Date: \_\_\_\_\_

**LEARNING OBJECTIVE:** We will explore geometric patterns and write formulas for the patterns. (Alg1M3L7)

# Arthretic Geometric of change Heady

### **CONCEPT DEVELOPMENT:**

Ancient Greeks thought ALL of math was geometry related. Sequences of numbers were created based on the shapes they resembles. Example:

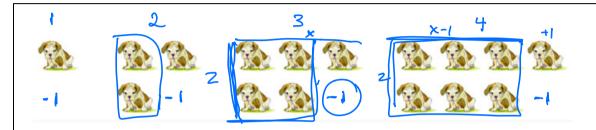


What would this pattern be called?

PERFECT SQUARE PATTERN

Create a Table of values

Is there a formula that can tell us what numbers would satisfy the rule?


$$D(x) = x^2$$
"The number of dots is equal to the value of the step squared."
$$D(15) = 225$$

$$D(x) = 200$$

# **GUIDED PRACTICE:**

# **Steps for Analyzing Geometric Patterns**

- 1. Study the geometric image or picture carefully. What is happening as the pattern grows from one step to the next?
- 2. Create a table.
- 3. Write a formula that will help find the pattern in the  $n^{th}$  step.



Create a table:

Formula:

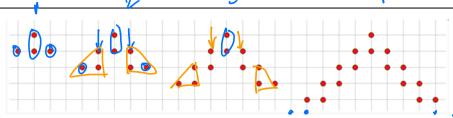
$$P(x) = 2x - 1$$
 $P(x) = 2(x - 1) + 1$ 

How many puppies will there be on the 60<sup>th</sup> step? How could you express this using the formula?

$$P(66) = 2(66) - 1$$

119 PUPPIES

Will there ever be a step with exactly 46 puppies? How do you know?


Always odd. Definition of an odd # 13 to multiply by 2 and add or subtreat I

What is P(253)? 46 is  $\mathbb{Z}V\mathbb{Z}N$ .

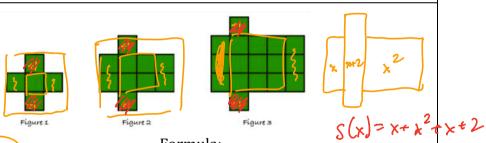
$$P(253) = 2(253) - 1$$
  
=  $506 - 1 = 505 \sqrt{ }$ 

Mr. Rogove

Date: \_\_\_



Create a table: Terry Dots


Formula:

How many dots in the 66<sup>th</sup> step?

264

Will D(n) = 66? Why or why not?

No. 66 is divisible by 4



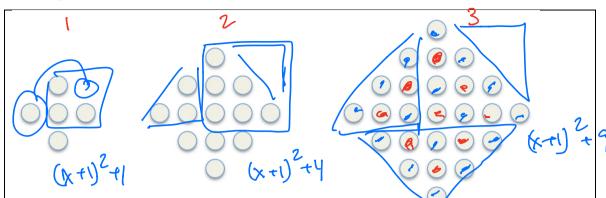
Create a table:



Formula:

$$S(x) = x^{2} + \lambda x + \lambda$$
  
 $S(x) = (x+2)^{2} - \lambda x - \lambda$   
 $S(x) = x(x+2) + \lambda$ 

How many squares will there be in the 13th figure?


197

What is S(32)?

1090

Find n if 
$$S(n) = 626$$
  
 $S(n) = h(n+2) + 2 = 626$   $24^{th}$ 

# Mr. Rogove



Formula:

Create a table:

How many dots are in the 9th pattern?

How many dots will be in the  $13^{th}$  row of the  $12^{th}$  pattern? How do you know?

Will there ever be exactly 613 dots? If so, what pattern?

| Name:      | Math 7.2, Period |  |
|------------|------------------|--|
| Mr. Rogove | Date:            |  |
| MI. Rogove | Date             |  |

### **INDEPENDENT PRACTICE:**

### **ACTIVATING PRIOR KNOWLEDGE:**

### **CLOSURE:**

Compare the following tables:

| х | f(x) |
|---|------|
| 1 | 2    |
| 2 | 8    |
| 3 | 18   |
| 4 | 32   |

| x | g(x) |
|---|------|
| 1 | -4   |
| 2 | 8    |
| 3 | 20   |
| 4 | 32   |

What is the difference in how the values change?

What are the formulas for each table?

What is f(10)? What is g(10)?

# Notes:

Alg 1, Mod 3, Lesson 8 HW is problem set for Lesson 8.

Do Desmos demo 30 minutes.