Math _____, Period ____

Mr. Rogove

Date: _____

LEARNING OBJECTIVE: We will define integer sequences and give explicit formulas to define the pattern of a sequence. (Alg1M3L1)

ACTIVATING PRIOR KNOWLEDGE

We can recognize patterns in numbers.

What are the next three numbers in the pattern:

Describe the pattern:

ADDING 3

What could the next three numbers in the pattern be?

Describe the pattern:

CONCEPT DEVELOPMENT

A **sequence** can be thought of as an ordered list of elements.

Each element in the list is a term.

The terms are indexed by a subscript to make sure that they are in order. *Example:*

Stephan thought of a pattern that shows powers of 3. Here are the first five numbers of his sequence: 3, 9, 27, 81, 243,...

What expression can we write for the nth number in Stephan's sequence?

Can we make a few different tables of values?

	Term	Term	
	Number		//
		3	,
	P	Q	
	3	27	
	4	18	
\	(7)	243/	,
`			

Sequence	Term
Term	
O,	3
02	9
Q ₂	27
ay/	81
Q-	243

Function notation: Instead of using a_n , we can use f(n) notation, which means the formula for the nth term.

Example: $a_n = n^2 - 1$ becomes $f(n) = n^2 - 1$

Index of

FOR NOW, we are always starting when n=1!

Mr. Rogove

Date:

GUIDED PRACTICE

Steps to Writing Explicit Formulas for Sequences

- 1. Consider the given sequence, and define the pattern.
- 2. Write a formula that can be used to predict the nth term in the formula.
- **Remember, start when n = 1.
- 3. Rewrite your formula as an explicit formula by including (n-1) in your formula (if necessary).
- 4. Answer any questions as required by applying the formula.

Sequence: 4,7,10,13,16,...

Formula: $(a_n \text{ and } f(n) \text{ notation})^{n}$

an = 3n+1

f(n)=3n+1

Explicit
Formula (when n = 0)

$$a_{n}=3(n-1)+4$$

What is the 13th term in the sequence?

 $Q_{13} = 3(13) \pi = 40$

Sequence: 30, 25, 20, 15,...

SUBTRACTING 5

Formula: $(a_n \text{ and } f(n) \text{ notation})$

 $a_n = -5_{n+35}$

f(n) = -5n + 35 q = 30

Formula (when n = 0):

$$a_n = -5(n-1) + 30$$

What is the 26th term in the sequence?

Sequence 2 6, 10, 14,...

 \overrightarrow{ADD} (NG 4) Formula: $(a_n \text{ and } f(n) \text{ notation})$

 $a_{n}=4n-2$ f(n)=4n-2

Formula (when n = 0):

$$Q_{n} = 4(n-1) + 2$$

What is the 19th term in the sequence?

Sequence: 119, 117, 115, 113,...

Formula: $(a_n \text{ and } f(n) \text{ notation})$

an = -2n+121

Formula (when n = 0):

What is the 17th term in the sequence?

Mr. Rogove

Date: _____

Sequence: 1, 5, 25, 125, 625

Mulhaly 5 Formula: $(a_n \text{ and } f(n) \text{ notation})$

Sequence: 1, 16, 256, 4096,...

Formula: $(a_n \text{ and } f(n) \text{ notation})$

Formula (when n = 0) $a_n = 5^n$

Formula (when n = 0):

What is the 9th term in the sequence?

What is the 8th term in the sequence?

390,625

Sequence: Consider the following sequence:

<u>Sequence</u>: 1, 8, 27, 64,...

Formula: $(a_n \text{ and } f(n) \text{ notation})$

Formula: $(a_n \text{ and } f(n) \text{ notation})$

Formula (when n = 0):

Formula (when n = 0):

What does the 8th term look like?

What is the 9th term in the sequence?

Name:	Math, Period	
Mr. Rogove	Date:	
Sequence: A standard piece of paper has a length and width of 8.5 inches by 11 inches. Find the area of one piece of paper.	Sequence: Janet won the lottery—her after tax winnings were \$1,000,000,000. Each year she spent exactly half of the money she had. How much money did she spend the first year?	
If the paper were folded completely in half, what would be the area of the resulting rectangle?	How much money does she have left after the 3 rd year?	
Write a formula for a sequence to determine the area of the paper after <i>n</i> folds.	Write a formula for a sequence to determine the amount of money after <i>n</i> years.	
What is the area after 7 folds?	How much money does she have left after 10 years?	

INDEPENDENT PRACTICE

Complete Problem Set for Module 3, Lesson 1.

Name:	Math, Period
Mr. Rogove	Date:
CLOSURE	

NOTES Module 3, Lesson 1. Algebra 1