**LEARNING OBJECTIVE:** We will rearrange formulas and solve for variables. (Alg1M1L14)

#### **ACTIVATING PRIOR KNOWLEDGE:**

We know how to use formulas to find unknown quantities.

The side of one leg of a right triangle is 24 inches, and the hypotenuse is 25 inches. What is the length of the other leg?

The average of 3 numbers is 67. One number is 45, and another is 71. What is the third number?

$$3 \left(\frac{45+71+x}{3}\right) = (67)3$$

$$45+71+x = 201$$

$$116+x=201$$

$$-116=116$$

$$x = 85$$

#### **CONCEPT DEVELOPMENT:**

We can use properties of equality and inverse operations to rearrange formulas, and solve for specific variables.

Example:  $A = \pi r^2$  Let's solve for r.

FORMULA FOR AREA OF A CIRCLE!

#### **GUIDED PRACTICE:**

## **Steps for Solving For Variables**

- 1. Study the particular formula and identify the variable you are trying to solve for.
- 2. Perform inverse operations and use properties of equality to isolate the appropriate variable.

The formula for the perimeter of a rectangle is P = 2(l + w). Solve for w.

The surface area of a cone is  $S = \pi r^2 + \pi r l$ . Solve for l.

The formula for volume of a sphere is  $V = \frac{4}{3}\pi r^3$ . Solve for the radius.

$$\frac{3}{4} \left( \sqrt{\frac{4}{3}} \frac{11}{11} r^{3} \right) \frac{3}{4}$$

$$\frac{3}{4} = \frac{11}{11} r^{3}$$

$$\frac{3}{4} = \frac{11}{11} r^{3}$$

$$\frac{3}{4} = \frac{3}{11} r^{3}$$

$$\frac{3}{4} = \frac{3}{11} r^{3}$$

$$\frac{3}{4} = \frac{3}{11} r^{3}$$

The formula  $E = \frac{1}{2}kx^2$  is used to find the potential energy E of a spring with spring constant k that has been stretched by length x. Solve the formula for x.

$$\frac{2E}{K} = \frac{kx^2}{k}$$

$$\frac{2E}{k} = \frac{x^2}{x^2}$$

## Mr. Rogove

Date: \_\_\_\_\_

The formula for the average of three numbers is  $A = \frac{x+y+z}{3}$ . Solve for z.

$$3(A) = (\frac{x+y+z}{3}) = 3A = x+y+z - x-y - x-y - x-y - x-y = 2$$

The formula for Fahrenheit is  $F = 32 + \frac{9}{5}$  C. Solve for Celsius.

$$F = 32 + \frac{9}{5}c$$

$$-32 - 32$$

$$= (F - 32) = (8 c) \frac{2}{7}$$

$$= \frac{160}{9} = C$$

# $\frac{y-b}{m}=x.$

Solve for *y*.

3

$$\frac{m}{n} = \frac{p}{q}.$$

Solve for q.

$$\frac{m}{n} \times \frac{p}{q}$$

$$\frac{pq}{q} = \frac{pp}{m}$$

$$q = \frac{pp}{m}$$

Solve for m.  $\frac{\sqrt{km}}{\sqrt{k}} = \frac{m^2}{2 + p}$ . No 60!

$$km = \frac{m}{2} + \rho$$

$$-\frac{m}{2} - \frac{m}{2}$$

$$km - \frac{m}{a} = \rho$$

$$-\frac{m}{2} + \rho$$

$$km - \frac{m}{a} = \rho$$

$$-\frac{m}{2} + \rho$$

$$-\frac{m}{2} - \frac{m}{2}$$

$$-\frac{m}{2} - \frac{m}{2}$$

$$-\frac{m}{2} + \rho$$

$$-\frac{m}{2} - \frac{m}{2}$$

$$-\frac{m}{2$$

Solve for s. -us - us - us rs - t = us + v -us - us - us rs - us - t = V +t + t rs - us = V + t S(x - ut) = V + t r - u  $S = \frac{V + t}{r - u}$   $S = \frac{V + t}{r - u}$ 

Mr. Rogove

Date: \_\_\_\_\_

## INDEPENDENT PRACTICE:

Solve for the variable.

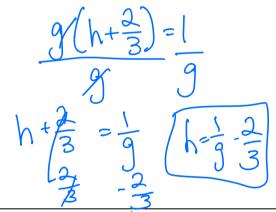
Simple Interest is calculated as I = Prt. Solve for t.

The standard form for the equation of a line is Ax + By = C. Solve for y.

$$Ax + By = C$$

$$-Ax - Ax$$

$$By = C - Ax$$


$$B = C - Ax$$

$$B = C - Ax$$

$$B = C - Ax$$

$$g\left(h + \frac{2}{3}\right) = 1.$$

Solve for *h*.



a(n-3) + 8 = bnSolve for *n*.

$$0(h-3)+8=bn$$
 $0n-3a+8=bn$ 
 $+3a-8$ 
 $+3a-8$ 
 $-bn$ 
 $-bn$ 
 $-bn$ 
 $-bn$ 
 $-bn$ 
 $-an-bn=3a-8$ 
 $-a-b$ 
 $-a-b$ 
 $-a-b$ 

Solve for *a*.

$$\frac{\chi}{1} = \frac{1+\alpha}{1-\alpha}$$

$$\chi(1-\alpha) = 1+\alpha$$

$$\chi - \chi \alpha = 1+\alpha$$

$$+ \chi \alpha + \chi \alpha$$

$$\chi = 1+\alpha+\chi \alpha$$

$$-1 - 1$$

$$\chi - 1 = \alpha + \chi \alpha$$

 $a^2 + b^2 = c^2.$  Solve for *b*.

$$a^{2}+b^{2}=c^{2}$$

$$-a^{2}-a^{2}$$

$$b^{2}=c^{2}-a^{2}$$

$$b^{2}=\sqrt{c^{2}-a^{2}}$$

$$b=\sqrt{c^{2}-a^{2}}$$